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Abstract The aim of this paper is to apply the variational iteration method to a class
of nonlinear, nonlocal, elliptic boundary value problems. The uniform convergence
of the scheme is presented and the work is illustrated by considering a number of
test examples that confirm the accuracy and efficacy of the iterative process. The
computational results show that the scheme is reliable, converges fast and compares
very well with the existing analytic solutions.
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1 Introduction

The goal of this article is to manipulate the variational iteration method (VIM) for
obtaining accurate numerical solutions for a class of one-dimensional nonlocal elliptic
boundary value problems. The first is the non-homogenous problem:

−α

⎛
⎝

1∫

0

u(t) dt

⎞
⎠ u′′(x) = f (x), (1.1)
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with boundary conditions
u(0) = a, u(1) = b. (1.2)

The second problem is nonlinear and homogeneous which is given by

−α

⎛
⎝

1∫

0

u(t) dt

⎞
⎠ u′′(x) + [u(x)]2m+1 = 0, (1.3)

where m is a positive integer, x ∈ (0, 1), and complimented with the same boundary
conditions as those given in (1.2).

These nonlocal elliptic problems and other similar ones [1,2] arise in several phys-
ical models including system of particles in thermodynamical equilibrium interacting
via gravitational (Coulomb) potential, Ohmic heating with variable thermal conduc-
tivity, fully turbulent behavior of real flow, shear bands in metals deformed under
high strain rates, local model for the temperature of a thin region which occurs during
linear friction welding, thermo-viscoelastic flows, and one-dimensional fluid flows
with rate of strain proportional to a power of stress multiplied by a function of
temperature. For details on such applications see [10] and the references therein.
Several papers dealt with such elliptic problems, for instance in [1], Cannon and
Galiffa developed a numerical method for the Eq. (1.3) with boundary conditions
(1.2), in which they established a priori estimates and the existence and uniqueness
of the solution to the nonlinear auxiliary problem via the Schauder fixed point the-
orem. They proved the existence and uniqueness to the problem and analyzed a dis-
cretization of the above problem and showed that a solution to the nonlinear differ-
ence problem exists and is unique and that the numerical procedure converges with
error O(h).

The strategy in this paper is to present the VIM to acquire accurate numerical
solutions for the nonlocal elliptic problems given in (1.1) and (1.3) which are compli-
mented with the boundary conditions (1.2). In recent years, numerous papers focused
on implementing the (VIM) as a powerful method for the exact and/or numerical solu-
tion of a wide spectrum of nonlinear equations [3] including algebraic, differential,
partial-differential, functional-delay and integro-differential equations (see [4–9,11–
14] and the references therein). To demonstrate convergence and accuracy character-
istics of the VIM strategy, a number of test examples are included. The numerical
experiments confirm the reliability of the approach as it handles such nonlocal elliptic
differential equations without imposing limiting assumptions that could change the
physical structure of the solution. The basic strategy of the procedure relies on con-
structing a correction functional using a general Lagrange multiplier, which is chosen
in a suitable manner that its correction solution is improved with respect to the ini-
tial approximation or to the trial function. The solution that arises from this iterative
method is in the form of successive approximations that yield the exact solution or
converge to it.

The outline of the paper is as follows. In Sect. 2, a brief overview of the VIM is
given as well as the variational iteration formulation of the nonlocal elliptic problems.
In Sect. 3, the uniform convergence of the VIM procedure is presented. In Sect. 4, five
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test examples are given to verify the accuracy and convergence of the (VIM) strategy.
Then in Sect. 5, a conclusion is given that briefly summarizes the results.

2 The numerical method

In this section, we will outline the basic strategy of the VIM when applied to the
nonlocal elliptic boundary value problem (1.3)–(1.2). The scheme for Eq. (1.1) follows
analogously. Following the approach, we need to construct a correction functional that
has the form:

un+1(x) = un(x) +
x∫

0

λ(s)
[
(un(s))ss − (1/α(p))

[
ũn(s)

]2m+1
]

ds, (2.1)

where p =
∫ 1

0
u(t) dt , while the subscript n = 0, 1, 2, ... denotes the nth order

approximation. The optimal value of the Lagrangian multiplier λ will be determined
using the variational theory, and ũn is the restricted variation which implies that
δ(ũn) = 0.

To start, operating the variation with respect to un on both sides of (2.1) yields:

δun+1

δun
= 1 + δ

δun

⎛
⎝

x∫

0

λ(s)
[
(un(s))ss − (1/α(p))

[
ũn(s)

]2m+1
]

ds

⎞
⎠, (2.2)

The nonlinear restricted term in the integrand vanishes upon taking the variation. As
a result, we get

δun+1(x) = δun(x) + δ

⎛
⎝

x∫

0

λ(s) (un)ss ds

⎞
⎠. (2.3)

Integrating by parts twice, we have

δun+1(x) = δun(x) + δ [λ(x)(yn)s(x)] − δ
[
λ′(x)yn(x)

]

+ δ

⎛
⎝

x∫

0

λ′′(s) un(s) ds

⎞
⎠ , (2.4)

or equivalently

δun+1(x) = [
1 − λ′(x)

]
δun(x) + δ [λ(x)(un)s(x)] + δ

⎛
⎝

x∫

0

λ′′(s) un(s) ds

⎞
⎠ .

(2.5)
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Thus, the stationary conditions are:

1 − λ′(s)
∣∣
s=x = 0,

λ(s)|s=x = 0,

λ′′(s) = 0.

(2.6)

The solution of Eq. (2.6) results in the following Lagrange multiplier:

λ(s) = s − x . (2.7)

The correction functional for Eq. (1.3) is thus given by

un+1(x) = un(x) +
x∫

0

(s − x)
[
(un(s))ss − (1/α(pn)) u2m+1

n (s)
]

ds, (2.8)

where

pn =
1∫

0

un(t) dt . (2.9)

Obviously and in a similar manner, the correction functional for (1.1) takes the form

un+1(x) = un(x) +
x∫

0

(s − x)
[
(un(s))ss + (1/α(pn)) f (s)

]
ds. (2.10)

Consequently, the solution can be obtained from

u(x) = lim
n→∞ un(x). (2.11)

In other words, the correction functional (2.10) will give several approximations,
and therefore the exact solution is obtained as the limit of the resulting successive
approximations. The existing numerical techniques used in the literature, such as
the Adomian decomposition method, the Galerkin method, and others, suffer from the
restrictive assumptions that are used to handle nonlinear terms. The VIM has no specific
requirements, such as linearization, small parameters, and Adomian polynomials for
nonlinear operators. Another important advantage is that the VIM method is capable
of greatly reducing the size of calculation while still maintaining high accuracy of
the numerical solution. This powerful technique handles both linear and nonlinear
equations in a unified manner without any need for the so-called Adomian polynomials
that we need if the Adomian decomposition method is applied. Having determined
the Lagrangian multiplier for any equation, the approximations are readily obtained.

123



1328 J Math Chem (2014) 52:1324–1337

3 Convergence analysis

In this section, we will show the convergence of the variational iteration procedure
given in Eq. (2.8). The scheme (2.10) is simpler and follows in a similar fashion.

Theorem 1 The sequences {un(x)}∞n=1, where x ∈ [0, 1], defined by (2.8) with
u0(x) = a + bx (a and b are real constants) converges to the exact solution, y(x), of
problem (1.3)–(1.2).

Proof By subtracting u(x) from both sides of (2.8), the scheme can be rewritten as

un+1(x) − u(x) = un(x) − u(x)

+
x∫

0

λ(s)
[
(un − u)ss + uss − (1/α(pn)) u2m+1

n (s)
]

ds. (3.1)

Here λ = s−x and note that the integrand was expressed in terms of un −u. Since u(x)

is the exact solution of (1.3), therefore the term uss in the integrand can be replaced
by (1/α(pn)) u2n+1

n (s). Upon letting En(x) = un(x) − u(x), Eq. (3.1) becomes

En+1(x) = En(x) +
x∫

0

λ(s)

×
[
(En(s))ss + (1/α(pn)) u2m+1(s) − (1/α(pn)) u2m+1

n (s)
]

ds. (3.2)

Integrating the first term in the integrand twice by parts we have

En+1(x) = En(x) + λ(x) (En)s (x) − λ′(x)En(x) +
x∫

0

λ′′(s)En(s) ds

+
x∫

0

λ(s)(1/α(pn))
(

u2m+1(s) − u2m+1
n (s)

)
ds. (3.3)

Upon using the three stationary conditions (2.6) into the latter equation we obtain

En+1(x) =
x∫

0

λ(s)(1/α(pn))
(

u2m+1(s) − u2m+1
n (s)

)
ds. (3.4)
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Operating with the L2-norm on both sides of the last equation we get

‖En+1(x)‖L2 ≤ |1/α(pn)|
x∫

0

‖λ(s)‖L2‖u2m+1
n (s) − u2m+1(s)‖L2 ds

≤ ‖λ(s)‖∞|1/α(pn)|
x∫

0

‖u2m+1
n (s) − u2m+1(s)‖L2 ds, (3.5)

where ‖λ(s)‖∞ = max
s∈[0,1] |λ(s)|. Clearly λ(s) is bounded since

‖λ(s)‖∞ = ‖x − s‖∞ ≤ ‖x‖∞ + ‖s‖∞ ≤ 1 + 1 = 2.

Applying the Mean Value Theorem to the integrand in (3.6) we have

‖En+1(x)‖L2 ≤ ‖λ(s)‖∞|1/α(pn)|
x∫

0

(2m + 1) ‖u2m(s)‖L2 ‖un(s) − u(s)‖L2 ds

≤ (2m + 1) ‖λ(s)‖∞|1/α(pn)|
x∫

0

‖u2m(s)‖L2 ‖En(x)‖L2 ds.

(3.6)
Let

L = max
s∈[0,1] |λ(s)|, Sn = max

s∈[0,1] |1/α(pn)|, and P = max
s∈[0,1] |u(s)| .

Then, from inequality (3.6) we get

‖En+1(x)‖L2 ≤ (2m + 1)L Sn P2m

x∫

0

‖En(s)‖L2 ds. (3.7)

Proceeding by induction and letting Ln = (2m + 1)L Sn P2m , we get

‖E1(x)‖L2 ≤ L0

x∫

0

‖E0(s)‖L2 ds ≤ L0 ‖E0(s)‖∞
x∫

0

ds = L0 ‖E0(s)‖∞ x,

‖E2(x)‖L2 ≤ L1

x∫

0

‖E1(s)‖L2 ds ≤ L0 L1 ‖E0(s)‖∞
x∫

0

s ds = L0 L1 ‖E0(s)‖∞
x2

2
,

...

‖En+1(x)‖L2 ≤ Ln

x∫

0

‖En(s)‖L2 ds ≤ (
�n

i=0 Li
) ‖E0(s)‖∞

x∫

0

sn

n! ds

= (
�n

i=0 Li
) ‖E0(s)‖∞

xn+1

(n + 1)! . (3.8)
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Here ‖E0(s)‖∞ = max
s∈[0,1] |E0(s)| and �n

i=0 Li = L0L1...Ln .

Since ‖E0(s)‖∞ = ‖u0(x) − u(x)‖∞ = ‖a + bx − u(x)‖∞ and x ∈ [0, 1], thus

‖E0(s)‖∞ ≤ ‖a + bx‖∞ + ‖u(x)‖∞ = |a| + |b| + ‖u(x)‖∞

= |a| + |b| + max
x∈[0,1] |u(x)|. (3.9)

Note that u(x) belongs to C2[0, 1] since it is the exact solution of Eq. (1.1) hence it is
bounded. Letting c = max

x∈[0,1] |y(x)| we have from (3.9) and (3.8):

‖En+1(x)‖L2 ≤ (
�n

i=0 Li
)
(a + b + c)

xn+1

(n + 1)!
≤ Ln∗ (a + b + c)

xn+1

(n + 1)! = d
(L∗ x)n+1

(n + 1)! , (3.10)

where L∗ = max
0≤i≤n

Li and d = (a + b + c)/L∗. Note that for x ∈ [0, 1] the sequence
{

d
(L∗ x)n+1

(n + 1)!
}

converges uniformly to 0 as n tends to infinity. Hence by (3.10) it

follows that ‖En+1(x)‖L2 converges to 0 which means un(x) converges uniformly to
u(x). 	


4 Numerical test examples

A modified version of the VIM is implemented to obtain numerical solutions to the
class of nonlinear, nonlocal elliptic boundary value problems. Five examples are dis-
cussed and the results are contrasted with existing exact solutions. The numerical
experiments show that the procedure is accurate and converges fast.

Example 1 Consider the following special case of Eq. (1.1) with α(q) = q1/3 and
f = − 6

3√4
x :

⎛
⎝

1∫

0

u(t) dt

⎞
⎠

1/3

u′′(x) = 6
3
√

4
x, (4.1)

subject to the boundary conditions

u(0) = 0, u(1) = 1. (4.2)

Problem (4.1)–(4.2) has the exact solution u(x) = x3.
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Table 1 VIM applied to
Example 1 using the
approximation u10

x Exact solution VIM solution Absolute error

0.1 .001 .0010252914 2.5(−5)

0.2 .008 .0080490501 4.9(−5)

0.3 .027 .0270697430 7.0(−5)

0.4 .064 .0640858376 8.6(−5)

0.5 .125 .1250958009 9.6(−5)

0.6 .216 .2160981001 9.8(−5)

0.7 .343 .3430912024 9.1(−5)

0.8 .512 .5120735751 7.4(−5)

0.9 .729 .7290436852 4.4(−5)

1.0 1.00 1.000000000 0.0

The correction functional for (4.1) is of the form:

un+1(x) = un(x) +
x∫

0

(s − x)

⎡
⎢⎣(un(s))ss − 6

3
√

4

⎛
⎝

1∫

0

un(x) dx

⎞
⎠

−1/3

s

⎤
⎥⎦ ds.

(4.3)
According to the boundary conditions, it is sensible to take the initial iterate as

u0(x) = hx, (4.4)

where h is a parameter to be found via matching the boundary condition at x = 1 with
the variational approximation un . The higher successive approximations are lengthy
expressions so we only list the first two.

u1(x) = hx + 1
3
√

2h
x3,

u2(x) = hx +
3
√

2
3
√

4h + 3
√

4/h
x3.

(4.5)

The first six approximations were computed. A comparison between the numerical
solution obtained by VIM using u10(x) and the exact solution is depicted in Table 1.
The value of h for such a case was found to be h = 0.0002554690.

Example 2 Consider the following special case of Eq. (1.1) with α(q) = q2 and
f = − 3

4 cos
( 2π

3 x
)
:

−
⎛
⎝

1∫

0

u(t) dt

⎞
⎠

2

u′′(x) = −3

4
cos

(
2π

3
x

)
, (4.6)
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subject to the boundary conditions

u(0) = 1, u(1) = −1/2. (4.7)

Problem (4.6)–(4.7) has the exact solution u(x) = cos
( 2π

3 x
)
.

The correction functional for (4.6) is of the form:

un+1(x) = un(x) +
x∫

0

(s − x)

⎡
⎢⎣(un(s))ss + 3

4

⎛
⎝

1∫

0

un(x) dx

⎞
⎠

−2

cos

(
2π

3
s

)⎤
⎥⎦ ds.

(4.8)
According to the boundary conditions, we may choose the initial iterate as u0 = 1+hx ,
however it was found that the convergence is very slow. Instead we altered the first
approximation and used:

u0(x) = 1 + hx2, (4.9)

where h is a parameter to be determined as in Example 1. The convergence was
extremely fast and to achieve high accuracy it suffices to list the first one.

u1(x) = 1

16π2
(
h2 + 6h + 9

)

×
[

16π2h2 + 96π2h + 144π2 − 243 + 243 cos

(
2π

3
x

)]
. (4.10)

The value of h for such a case was found to be h = −1.34601331373463. Alternatively,
in order to speed up the convergence, we selected the following initial iterate:

u0(x) = cos(hx), (4.11)

which satisfies the condition at x = 0 while h is a parameter to be determined using
the second boundary condition at x = 1. Again, only one step of the VIM was needed
to obtain a highly accurate solution, which is

u1(x) = 1

π2 sin2 h

[
3h2 cos(2πx/3) − π2 cos2 h + π2 − 3h2

]
. (4.12)

The value of h for such a case was found to be h = −2.09439510239319. A compar-
ison between the numerical solution obtained by VIM, using the above two choices
of the initial estimate u0(x), and the exact solution is reported in Table 2. Note that
both choices of u0 matches with the exact solution using only one step of the VIM.

Example 3 Consider the following special case of Eq. (1.1) with α(q) = (1 + q)2

and f = 49
18 :

−
⎛
⎝1 +

1∫

0

u(t) dt

⎞
⎠

2

u′′(x) = 49

18
, (4.13)

subject to the boundary conditions
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Table 2 VIM applied to Example 2 using two different initial approximations u0

x Exact solution VIM solution u1 VIM solution u1
(u0 = 1 + hx2) (u0 = cos (hx))

0.1 .978147600733806 .978147600733793 .978147600733810

0.2 .913545457642601 .913545457642589 .913545457642606

0.3 .809016994374948 .809016994374937 .809016994374953

0.4 .669130606358860 .669130606358850 .669130606358864

0.5 .499999999999998 .499999999999995 .500000000000006

0.6 .309016994374954 .309016994374945 .309016994374955

0.7 .104528463267660 .104528463267655 .104528463267661

0.8 −.104528463267647 −.104528463267649 −.104528463267644

0.9 −.309016994374942 −.309016994374938 −.309016994374937

1.0 −.499999999999995 −.499999999999986 −.499999999999988

u(0) = 0, u(1) = 0. (4.14)

Problem (4.13)–(4.14) has the exact solution u(x) = x(1 − x).
The correction functional for this case is of the form:

un+1(x) = un(x) +
x∫

0

(s − x)

⎡
⎢⎣

⎛
⎝1 +

1∫

0

un(x) dx

⎞
⎠

2

(un(s))ss + 49

18

⎤
⎥⎦ ds. (4.15)

According to the boundary conditions, we may choose the initial iterate to be

u0(x) = hx, (4.16)

where h is a parameter to be found via manipulating the boundary condition at x = 1.
The higher successive approximations are lengthy expressions so we only list the first
two.

u1(x) = hx − 49

36
x2,

u2(x) = hx − 972503

419904
x2 + 2891

3888
x2h + 49

144
x2h2.

(4.17)

The first six approximations were computed. The value of h for such a case was found
to be h = 1.003912755. A comparison between the numerical solution obtained by
VIM using u6(x) and the exact solution is depicted in Table 3.

Example 4 Consider the following special case of Eq. (1.3) with α(q) = 1/q:

− 1

q
u′′(x) + 3

4(2
√

2 − 2)
u5 = 0, (4.18)

123



1334 J Math Chem (2014) 52:1324–1337

Table 3 VIM applied to
Example 3 using the
approximation u6

x Exact solution VIM solution Absolute error

0.1 .09 .0903492755 3.5(−4)

0.2 .16 .1606145510 6.1(−4)

0.3 .21 .2107958265 8.0(−4)

0.4 .24 .2408931020 3.8(−4)

0.5 .25 .2509063775 9.1(−4)

0.6 .24 .2408356530 8.4(−4)

0.7 .21 .2106809285 6.8(−4)

0.8 .16 .1604422040 4.4(−4)

0.9 .09 .0901194795 1.2(−4)

1.0 .00 −.000287245 2.9(−4)

where

q =
1∫

0

u(t) dt,

and subject to the boundary conditions

u(0) = 1, u(1) = √
2/2. (4.19)

Problem (4.18)–(4.19) has the exact solution u(x) = 1/
√

1 + x .
The correction functional for this case becomes:

un+1(x) = un(x) +
x∫

0

(s − x)

[
(un(s))ss + 3q

4(2
√

2 − 2)
u5

n(s)

]
ds, (4.20)

where q is given above. According to the boundary conditions, we may choose the
initial iterate to be

u0(x) = 1 + hx, (4.21)

where h is a parameter to be found via manipulating the second boundary condition
at x = 1. The higher successive approximations are lengthy expressions so we only
list the first one.

u1(x) = 1 + 1

224(
√

2 − 1)

[
h6x7 + 2h5x7 + 7h5x6 + 14h4x6 + 21h4x5

+ 42h3x5 + 35h3x4 + 70h2x4 + 35h2x3 + 70hx3

+ 224
√

2hx + 21hx2 − 224ht + 42t2
]
. (4.22)

The first three approximations were computed. The value of h was found to be h =
−0.4990199339. A comparison between the numerical solution obtained by VIM
using u3(x) and the exact solution is depicted in Table 4.
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Table 4 VIM applied to
Example 4 using the
approximation u3

x Exact solution (VIM) solution Absolute error

0.1 .9534625894 .9535746906 1.1(−4)

0.2 .9128709292 .9130017937 1.3(−4)

0.3 .8770580194 .8773763380 3.2(−4)

0.4 .8451542545 .8454589061 3.0(−4)

0.5 .8164965812 .8167992837 3.0(−4)

0.6 .7905694151 .7909250558 3.6(−4)

0.7 .7669649889 .7672832340 3.2(−4)

0.8 .7453559928 .7457397214 3.8(−4)

0.9 .7254762502 .7257126136 2.3(−4)

1.0 .7071067814 .7072857547 1.8(−4)

Table 5 VIM applied to
Example 5 using the
approximation u2

x Exact solution (VIM) solution Absolute error

0.1 .9534625894 .9533501404 1.1(−4)

0.2 .9128709292 .9126557645 2.2(−4)

0.3 .8770580194 .8767665261 2.9(−4)

0.4 .8451542545 .8448277743 3.3(−4)

0.5 .8164965812 .8161831014 3.1(−4)

0.6 .7905694151 .7903129070 2.6(−4)

0.7 .7669649889 .7667949063 1.7(−4)

0.8 .7453559928 .7452783290 7.8(−5)

0.9 .7254762502 .7254667949 9.5(−6)

1.0 .7071067814 .7071067678 1.2(−8)

Example 5 Consider the following special case of Eq. (1.3) with α(q) = q:

−qu′′(x) + 3(2
√

2 − 2)

4
u5 = 0, (4.23)

where

q =
1∫

0

u(t) dt,

and subject to the boundary conditions

u(0) = 1, u(1) = √
2/2. (4.24)

Problem (4.23)–(4.24) has the exact solution u(x) = 1/
√

1 + x .
The correction functional for this case becomes:

un+1(x) = un(x) +
x∫

0

(s − x)

[
(un(s))ss − 3(2

√
2 − 2)

4q
u5

n(s)

]
ds, (4.25)
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where q is given above. According to the boundary conditions, we may choose the
initial iterate to be

u0(x) = 1 + hx, (4.26)

where h is a parameter to be found via manipulating the second boundary condition
at x = 1. The higher successive approximations are lengthy expressions so we only
list the first one.

u1(x) = 1

14(h + 2)

[√
2 h5x7 − h5x7 + 7

√
2 h4x6 − 7h4x6 + 21

√
2 h3x5

− 21h3x5 + 35
√

2 h2x4 − 35h2x4 + 35
√

2 hx3 − 35hx3

+ 21
√

2 x2+14h2x+ 28hx − 21x2+14h + 28
]
. (4.27)

The first two approximations were computed. The value of h was found to be h =
−0.5011368413. A comparison between the numerical solution obtained by VIM
using u3(x) and the exact solution is depicted in Table 5.

5 Conclusion

A modified version of the VIM was presented and successfully employed for obtaining
numerical solutions to a class of nonlinear, nonlocal, elliptic boundary value problems.
The convergence of the scheme was formally verified. The algorithm is efficient, prac-
tical, and effective when compared with existing techniques. Numerical experiments
for the test examples are plausible and the results of the examples that were examined
confirm the accuracy, efficiency and fast convergence of the strategy. Furthermore,
the approach does not require imposing limiting assumptions that could change the
physical structure of the solution.
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